Table: | For specifying the system |
MIL_ID SysId, | //in |
MIL_INT64 ContextType, | //in |
MIL_INT64 ControlFlag, | //in |
MIL_ID *ContextClassIdPtr | //out |
This function allocates a classifier context, a dataset context, or a training context on the specified system. These contexts are either for a predefined CNN (convolutional neural network) classifier or a tree ensemble classifier.
When the context is no longer required, you should release its memory, using MclassFree().
Specifies the identifier of the system on which to allocate the context. Set this parameter to one of the following values:
For specifying the system
|
|||||||||||||||||||||||||||||||||||||||
Value | Description | ||||||||||||||||||||||||||||||||||||||
M_DEFAULT_HOST |
Specifies the default Host system of the current MIL application. |
||||||||||||||||||||||||||||||||||||||
MIL system identifier |
Specifies a valid system identifier, previously allocated using MsysAlloc(). |
Specifies the type of context to allocate. Set this parameter to one of the following values:
For specifying the type of context to
allocate
|
|||||||||||||||||||||||||||||||||||||||
Value | Description | ||||||||||||||||||||||||||||||||||||||
M_CLASSIFIER_CNN_PREDEFINED |
Specifies to allocate a predefined CNN classifier context. Typically, you should set the ControlFlag parameter to a specific CNN classifier context that Matrox has predefined. When you allocate a classifier context, you must typically train it (MclassTrain()) before predicting with it (MclassPredict()). (summarize)Specifies to allocate a predefined CNN classifier context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_CLASSIFIER_TREE_ENSEMBLE |
Specifies to allocate a tree ensemble classifier context. When you allocate a classifier context, you must typically train it (MclassTrain()) before predicting with it (MclassPredict()). (summarize)Specifies to allocate a tree ensemble classifier context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_DATASET_FEATURES |
Specifies to allocate a features dataset context. This context holds the feature data with which to train a tree ensemble classifier (M_CLASSIFIER_TREE_ENSEMBLE). (summarize)Specifies to allocate a features dataset context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_DATASET_IMAGES |
Specifies to allocate an images dataset context. This dataset holds the image data with which to train a CNN classifier (M_CLASSIFIER_CNN_PREDEFINED). You can also use an images dataset context with MclassPredict() to label images in an existing dataset (assisted labeling). (summarize)Specifies to allocate an images dataset context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_TRAIN_CNN |
Specifies to allocate a CNN training context. This context holds the training settings with which to train a CNN classifier context, using MclassTrain(). (summarize)Specifies to allocate a CNN training context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_TRAIN_TREE_ENSEMBLE |
Specifies to allocate a tree ensemble training context. This context holds the training settings with which to train a tree ensemble classifier context, using MclassTrain(). (summarize)Specifies to allocate a tree ensemble training context. (more details...) |
Specifies which predefined CNN classifier context to use. These classifier contexts are built by Matrox; you cannot modify their underlying architecture.
You must set this parameter to M_DEFAULT if you are not allocating a predefined CNN classifier context (M_CLASSIFIER_CNN_PREDEFINED).
For specifying which predefined CNN classifier
context to use
|
|||||||||||||||||||||||||||||||||||||||
Value | Description | ||||||||||||||||||||||||||||||||||||||
M_DEFAULT |
Specifies no predefined CNN classifier context. M_DEFAULT is the only possible setting when you are not allocating a predefined CNN classifier context. You cannot directly train a predefined CNN classifier context if you specify M_DEFAULT. In this case, you would typically copy a resulting trained context into this context (MclassCopyResult()). (summarize)Specifies no predefined CNN classifier context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_FCNET_COLOR_XL |
Specifies an extra large FCNet classifier context that is for color images. Note, this corresponds to the FCNET_COLOR_XL.mclass context file that MIL installed. This classifier is intended for transfer learning. It has a minimum image size (receptive field) of 195 pixels and a step size of 32 pixels. You must use color (3-band) images with this classifier. (summarize)Specifies an extra large FCNet classifier context that is for color images. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_FCNET_M |
Specifies a medium FCNet classifier context. Note, this corresponds to the FCNET_M.mclass context file that MIL installed. This classifier is for a complete training. It has a minimum image size (receptive field) of 83 pixels and a step size of 8 pixels. You can use grayscale (1-band) or color (3-band) images with this classifier. (summarize)Specifies a medium FCNet classifier context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_FCNET_MONO_XL |
Specifies an extra large FCNet classifier context that is for monochrome images. Note, this corresponds to the FCNET_MONO_XL.mclass context file that MIL installed. This classifier is intended for transfer learning. It has a minimum image size (receptive field) of 195 pixels and a step size of 32 pixels. You must use grayscale (1-band) images with this classifier. (summarize)Specifies an extra large FCNet classifier context that is for monochrome images. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_FCNET_S |
Specifies a small FCNet classifier context. Note, this corresponds to the FCNET_S.mclass context file that MIL installed. This classifier is for a complete training. It has a minimum image size (receptive field) of 43 pixels and a step size of 4 pixels. You can use grayscale (1-band) or color (3-band) images with this classifier. (summarize)Specifies a small FCNet classifier context. (more details...) |
||||||||||||||||||||||||||||||||||||||
M_FCNET_XL |
Specifies an extra large FCNet classifier context. Note, this corresponds to the FCNET_XL.mclass context file that MIL installed. This classifier is for a complete training. It has a minimum image size (receptive field) of 195 pixels and a step size of 32 pixels. You can use grayscale (1-band) or color (3-band) images with this classifier. (summarize)Specifies an extra large FCNet classifier context. (more details...) |
Header | Include mil.h. |
Library | Use mil.lib; milclass.lib. |
DLL | Requires mil.dll; milclass.dll. |